-
Publikationsart
-
Zeitschriftenbeiträge (peer-reviewed)
-
Titel
-
Global models and predictions of plant diversity based on advanced machine learning techniques
-
Medien
-
New Phytologist
-
Heft
-
4
-
Band
-
237
-
Autoren
-
Lirong Cai,
Holger Kreft,
Amanda Taylor,
Pierre Denelle,
Julian Schrader,
Franz Essl,
Mark van Kleunen,
Jan Pergl,
Petr Pyšek,
Anke Stein,
Marten Winter,
Julie F. Barcelona,
Nicol Fuentes,
I. Inderjit,
Dirk Nikolaus Karger,
John Kartesz,
Andreij Kuprijanov,
Misako Nishino,
Daniel Nickrent,
Arkadiusz Nowak,
Dr. Annette Patzelt
,
Pieter B. Pelser,
Paramjit Singh,
Jan J. Wieringa,
Patrick Weigelt
-
Seiten
-
1432-1445
-
Veröffentlichungsdatum
-
14.11.2022
-
Zitation
-
Cai, L.; Kreft, H.; Taylor, A.; Denelle, P.; Schrader, J.; Essl, F.; van Kleunen, M.; Pergl, J.; Pyšek, P.; Stein, A.; Winter, M.; Barcelona, J.; Fuentes, N.; Inderjit, I.; Karger, D.; Kartesz, J.; Kuprijanov, A.; Nishino, M.; Nickrent, D.; Nowak, A.; Patzelt, A.; Pelser, P.; Singh, P.; Wieringa, J.; Weigelt, P. (2022): Global models and predictions of plant diversity based on advanced machine learning techniques. New Phytologist 237 (4), S. 1432-1445. DOI: 10.1111/nph.18533