Adaptive und sensorgestützte Bewässerung extensiver Gründächer zur Optimierung des urbanen Wassermanagements im Hinblick auf Niederschlagsrückhalt und Verdunstungskühlung
Hintergrund
Begrünte Dachflächen sind in zweifacher Hinsicht Kernelemente von Mitigationsstrategien bezogen auf die Auswirkungen des Klimawandels im urbanen Raum. Einerseits sollen sie bei zukünftig häufiger auftretenden Starkregenereignissen das Risiko von Sturzfluten durch eine Verzögerung des Regenwasserabflusses reduzieren. Andererseits soll durch die Evapotranspiration der Flächen das thermische Milieu verbessert und die Entstehung von städtischen Hitzeinseln verhindert werden. Beides können die aktuell üblichen Extensivbegrünung auf Grund ihrer grundlegenden Konzeption – dünnschichtiger Aufbau mit schnelldrainenden Substraten und trockenheitsadaptierte Pflanzen – nicht leisten. In den letzten Jahren wurden daher neue Typen von Extensivbegrünungen entwickelt, die unter den Bezeichnungen Klima- bzw. Retentionsdach am Markt eingeführt wurden. Bei diesen Konzepten werden zum einen andere Pflanzengesellschaften verwendet und zum zweiten verfügen sie über ein größeres Wasserspeichervermögen ohne grundlegend höhere Anforderungen an die Gebäudestatik zu stellen. Allerdings bleibt bei diesen Systemen ein schwer lösbarer Zielkonflikt zwischen maximalem Wasserrückhalt und maximaler Evapotranspiration bestehen. Ersteres verlangt nach einem maximalen Speichervolumen und damit einem geringen Wassergehalt im Substrat, während für den zweiten Aspekt eine gleichbleibend hohe Substratfeuchte notwendig ist.
Zielstellung und Forschungsansatz
Im Forschungsvorhaben werden diese beiden gegenläufigen Aspekte bei der Entwicklung eines adaptiven, sensorgestützten Bewässerungsmanagements für neuartige, extensive Dachbegrünungen berücksichtigt. Grundlage für das Bewässerungsmanagement sind zum einen Vor-Ort gemessenen Umweltdaten (z.B. Substratfeuchte, Wasservorrat im Unterbau, Lufttemperatur), Daten der kurz- und mittelfristigen Wettervorhersage (Niederschläge, Temperatur, Einstrahlung, Evapotranspiration) sowie die zur Verfügung stehenden Wasserressourcen für die Bewässerung (Trink-, Grau- oder Regenwasser). Die Parametrisierung des Bewässerungsmanagements erfolgt auf Basis von Messwerten (z.B. zur Evapotranspirationsleistung von Dachbegrünungen in Abhängigkeit von den Wetterbedingungen sowie der Substratfeuchte) die an sechs realitätsnahen, kleinmaßstäblichen Dachbegrünungsmodellen (s. Abb. 1) erhoben werden. Der Wasserhaushalt in den Modulen wird über eine kontinuierliche Wägung erfasst, zudem sind in den Modellen unter anderem Sensoren zur Erfassung der Substratfeuchte und -temperatur sowie der Luftfeuchte und -temperatur verbaut. Des Weiteren sind alle Modelle mit einem Niederschlagssimulator, mit dem Regenereignisse von einem leichten Dauerregen bis zu einem extremen Gewitterschauer nachgestellt werden können, ausgestattet. Des Weiteren kann der Regenwasserabfluss mit hoher zeitlicher Auflösung gemessen werden.
Aktueller Stand der Arbeiten
Der Aufbau der sechs Dachbegrünungsmodelle ist inzwischen abgeschlossen. Nach grundlegenden Funktionstest wurden die ersten Niederschlagsereignisse simuliert und mit der fortlaufenden Datenerfassung begonnen. Zudem wurden automatisierte Schnittstellen zum Abruf und zur Auswertung der benötigten Vorhersagewerte geschaffen. Dabei handelt es sich um Daten, die vom DWD über den Serverservice Open-Data allgemein zugänglich zur Verfügung gestellt werden. Zum einen werden kurz- und mittelfristige Vorhersagen (bis + 72 h) u.a. zum Niederschlag, der Einstrahlung, der Temperatur und der potentiellen Evapotranspiration herangezogen, die aus den MOSMIX-L-Datensätzen – einer statistisch optimierten Punktvorhersage, die viermal täglich aktualisiert wird und stündliche Prognosewerte für die nächsten zehn Tage liefert – stammen. Auf Basis dieser Daten soll insbesondere die Bewässerung der Vegetation gesteuert werden. Der zweite Datensatz sind räumlich hochaufgelöste, radarbasierte Niederschlagskarten (RADVOR). Diese Karten werden alle 15 min mit einer Zeitverzögerung von einer Stunde bereitgestellt. Sie liefern für 1 km² große Rasterpunkte die aktuelle Niederschlagsmenge sowie zwei Kurzeitvorhersagen (+60 und +120 min). Auf Basis dieser Daten soll der Wasserstand im Retentionselement reguliert werden. Zum einen soll bei angekündigten Starkregenereignissen das Wasser aus dem Retentionselement frühzeitig abgelassen werden, zum zweiten soll die Geschwindigkeit des Wasserablaufs während eines Starkregens reguliert werden.
Geplante Arbeiten
Mit Beginn der Vegetationsperiode werden fortlaufende Messserien gestartet, bei denen vor allem die Evapotranspirationsleistung der Pflanzen in Abhängigkeit von den Wetterbedingungen und der Substratfeuchte sowie der Verlauf des Drainwasserablaufs nach unterschiedlichen Niederschlagsereignissen ermittelt werden. Mit diesen Daten wird das Bewässerungsmanagement parametrisiert. Zeitglich sollen Messungen unter Realbedingungen mit einer mobilen Sensorplattform, deren Prototyp aktuell von der Fa. ZinCo getestet wird, erfolgen, um die Übertragbarkeit der gewonnenen Daten zu prüfen.
- Publikationsart
- Vorträge
- Titel
- Adaptive und sensorgestützte Bewässerung extensiver Gründächer zur Optimierung des urbanen Wassermanagements im Hinblick auf Niederschlagsrückhalt und Verdunstungskühlung
- Medien
- 14. Projekttage der Bauforschung
- Autoren
- Dr. Dieter Lohr , Heinz-Josef Schmitz , Ralf Walker, Prof. Dr. Elke Meinken
- Veröffentlichungsdatum
- 03.03.2020
- Zitation
- Lohr, Dieter; Schmitz, Heinz-Josef; Walker, Ralf; Meinken, Elke (2020): Adaptive und sensorgestützte Bewässerung extensiver Gründächer zur Optimierung des urbanen Wassermanagements im Hinblick auf Niederschlagsrückhalt und Verdunstungskühlung. 14. Projekttage der Bauforschung.