Using machine learning on tree-ring data to determine the geographical provenance of historical construction timbers

Publikationsart
Zeitschriftenbeiträge (peer-reviewed)
Titel
Using machine learning on tree-ring data to determine the geographical provenance of historical construction timbers
Medien
Ecosphere
Band
14
Artikelnummer
e4453
Autoren
Eileen Kuhl, Prof. Dr. Christian Zang , Jan Esper, Dana F. C. Riechelmann, Ulf Büntgen, Martin Briesch, Frederick Reinig, Philipp Römer, Oliver Konter, Martin Schmidhalter, Claudia Hartl
Veröffentlichungsdatum
07.03.2023
Zitation
Kuhl, E.; Zang, C.; Esper, J.; Riechelmann, D.; Büntgen, U.; Briesch, M.; Reinig, F.; Römer, P.; Konter, O.; Schmidhalter, M.; Hartl, C. (2023): Using machine learning on tree-ring data to determine the geographical provenance of historical construction timbers. Ecosphere 14, e4453. DOI: 10.1002/ecs2.4453
nach oben