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Accurate Prediction of Thermophilic and Mesophilic Proteins
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Thermostability of Proteins

The thermostability of proteins is an essential property that is important in many
biotechnological fields, such as enzyme engineering and protein-hybrid optoelectronics

Example: High-power light emitting diodes have working device temperatures above 70°C

@ Machine learning can be used to predict whether a protein is thermophilic or mesophilic
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Physicochemical Properties as Features
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» Derive physicochemical properties for each amino-acid in a protein sequence as features:
» Basic descriptors, such as weight, charge, polarity, mean cdW volume etc..
» Residue composition
» Physicochemical properties, such as composition and distribution

» Train classical discriminative machine learning models on thermophilic and mesophilic
protein sequences (e.g. Zhang and Fang 2007; Lin and Chen 2011; Charoenkwn et al.
2021; Ahmed et al. 2022)
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» We derived data from previously published studies (e.g. Zhang and Fang, 2007; Lin and
Chen, 2011; Ahmed et al. 2022) and cleaned up the dataset, e.g. removed duplicated and

overlapping sequences, merged them with the latest UniPort entries etc..
» In addition, we collected new data using different resources and databases, e.g.

TEMPURA (Sato et al., 2020)

» Removed evolutionarily related sequences with a similarity of more than 40%

» Derived 599 physicochemical features

Full dataset

Class Sequences

non-thermophilic 4545
thermophilic 2864

Prof. Dr. Dominik Grimm (HSWT, TUMCS)
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Cleaned and filtered dataset

Class Sequences

non-thermophilic

3440

thermophilic

1699
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Nested cross-validation with Bayesian hyperparameter optimization

Matthew’s Correlation Coefficient (MCC) on test data in nested cross-validation
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+1 best agreement between predicted and actual values
0 no agreement
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Measurement is unaffected by unbalanced class
ratios
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There is a similarity between human languages and protein sequences
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A language model is a probability distribution over sequences of words

Amino Acids A|R[N|D
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» Use amino-acid sequence directly, without
manually deriving physicochemical properties

» Use sequence-based deep neural networks

» Different types of sequence-based models can be
investigated, e.g., LSTMs, Bi-LSTM, Transformer

(Memory) Cell Prediction
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Nested cross-validation with Bayesian hyperparameter optimization

Matthew’s Correlation Coefficient (MCC) on test data in nested cross-validation
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Nested cross-validation with Bayesian hyperparameter optimization

Matthew’s Correlation Coefficient (MCC) on test data in nested cross-validation

Sequence-based and hybrid-models are still outperformed by
basic feature-based models! What could be the reason? Can

we do better?

Feature-based models Sequence-based models
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Large Protein Language Models
Original Protein Sequence AESTLGAAAAQSGRYFGTAIASGRLSDSTYTSI. ..

Masked Protein Sequence AES*LG*AAA***RYF*TAIA*GRLS**TY*SI...

ProtT5XLUniRef50 (Elnaggar et al., 2022)

»  Self-supervised training on 50 million UniRef50
protein sequences

»  Supercomputer with 5616 GPUs and 1024 TPUs

»  ProtT5 outperformed state-of-the-art in terms
secondary structures

Tokenization & Sequence Encoding

Stack of N self-attention transformer
layers

» Model can learn some of the grammar and

language of proteins Latent amino acid embeddings

Learn to reconstruct sequence AESTLGAAAAQSGRYFGTAIASGRLSDSTYTSI...

Prof. Dr. Dominik Grimm (HSWT, TUMCS) 12



WEIHENSTEPHAN - TRIESDORF g:
University of Applied Sciences TMM@ — m“

Protein Language Model-based Thermophilicity Predictor — ProLaTherm

» First purely sequence-based thermophilicity prediction method

» ProLaTherm does not rely on manual feature engineering

. . . Florian Haselbeck Maura John
» ProLaTherm integrates pretrained embeddings from large

protein language models (ProtT5XLUniRef50, Elnaggar et al.

Protein Language Average
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Nested cross-validation with Bayesian hyperparameter optimization

Matthew’s Correlation Coefficient (MCC) on test data in nested cross-validation
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Nested cross-validation with Bayesian hyperparameter optimization

How well does our model generalize to data that has never
been seen? How does it compare to models from literature?

15
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Independent Test Data

» We created an independent test set to assess the generalization abilities of ProLaTherm

» Not overlapping with data from tools published in literature

» The data only contains species and protein sequences that have not been seen during

training (it is not allowed that different proteins from the same species occur in both,
training and testing)

Class Species Sequences
Non-thermophilic 75 224
thermophilic 51 345

Species independent test set

Prof. Dr. Dominik Grimm (HSWT, TUMCS) 16
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Evaluation of ProLaTherm on proteins from species not included in the training

» Independent evaluation of ProLaTherm on novel protein sequences from species not
included in the training

i
5

ROC ProLaTherm vs. DeepTP

Method MCC 1.0- T —
ThermoPred (Lin and Chen, 2011) 0.635 y
SCMTPP (Charoenkwan et al. 2021) 0.641 % N /,/’/
iThermo (Ahmed et al. 2022) 0.637 Ea
SAPPHIRE (Charoenkwan et al. 2022)  0.752 % 0.4- ///

2 .~
DeepTP (Zhao et al. 2023) 0.772 . ‘_/;mLaTherm S RSN, S
BertThermo (Pei et al. 2023) 0.757 //'/ Efﬁﬁ:?i,ﬂ,";jﬁfifﬂiﬁéf 3.2533978)
ProLaTherm (ours) 0.847 Y 02 0.4 0.6 0.8 1.0

False Positive Rate
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Prediction Analysis of ProLaTherm

Performance of ProLaTherm on thermophilic species of the independent test set for different optimal

growth temperatures
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» First purely sequence-based thermophilicity prediction method that does not
rely on manual feature engineering

» ProLaTherm integrates pre-trained embeddings from protein language
models (ProtTS5XLUniRef50, Elnaggar et al. 2022)

» ProLaTherm is superior in thermophilicity prediction with respect to all
comparison partners

» ProLaTherm performs very well for proteins with an OGT above 70°C with low
false negative rates (below 2.6%)

19
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Synthetic Protein Design
using Generative Machine Learning
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Generative Pretrained Transformer (GPT)
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A language model $

Output: is

» GPT-2 outputs one token at a time based on a probability

» The generated token is then fed back to the input sequence and is used as new

input to the model to generate the next token o
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Protein Generative Pretrained Transformer (ProtGPT-2)
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Output: G F P P A G

» ProtGPT-2 is trained on 50 million protein sequences from Uniref50
» 10% of the sequences were randomly selected as validation set

22
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Synthetic Protein Design with G1lycoGPT

» We used the pretrained ProtGPT2 and fine-tuned and retrained the model
using transfer learning on Glycosyltransferase Family 10 (GT10) sequences

» QOur adapted model GlycoGPT is then used to generate novel amino-acid
sequences from the GT10 family

» We developed bioinformatics pipeline to evaluate the generated sequences
with respect to plausibility to select promising candidates for evaluation in the
wet-lab (primary sequence, BLAST similarity, secondary structure, solubility,

activity, thermostability and 3D structure using AlphaFold predictions)
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Synthetic Protein Design with GlycoGPT

» \We have started to develop GlycoGPT, a generative machine learning model for
synthetic protein design of GT10 sequences

» In-silico evaluation of generated sequences is rather difficult > the next step is
to evaluate the generated sequences in the laboratory

» Adding constraints to the model architectures to allow the generation of proteins
with specific functions

25



\\\H\

WEIHENSTEPHAN - TRIESDORF synBiofoundry r
University of Applied Sciences @TUM ) _

Acknowledgements

Contact Information
Prof. Dr. Dominik Grimm
% dominik.grimm@tum.de

@ http:/ibit.cs.tum.de/
Y @dg_grimm

\s\ GrimmLab Funding

DF Deutsche
Forschungsgememschaft

man Research Foundatio

oxon
b A
Bayerisches Staatsministerium fir 2 )
Ernahrung, Landwirtschaft und Forsten ISl el

Geférdert durch Projekttriger

& Bundesministerium * Bundesanstalt fiir
fiir Erndhrung Landwirtschaft und Eméhrung
und Landwirtschaft

aufgrund eines Beschlusses
des Deutschen Bundestages

GrimmLab Team Collaborations for these Projects

Josef Eiglsperger Volker Sieber
Nikita Genze
R t
Florian Haselbeck uben Costa
Maura John Thanks for your attention!
Sofia Martello

Jonathan Pirnay S
Krystian Budkiewicz f GrimmLab Team

Maximilian Wirth
Anna Fischer

European
Innovation
Council

Gefordert durch

Bayerisches Staatsministerium fiir
Wirtschaft, Landesentwicklung und Energie

GEFORDERT VOM

% Bundesministerium
fur Bildung
und Forschung




